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Abstract-- In various VLSI designs, the adders are frequently used. The most commonly used adder is the Ripple Carry Adder (RCA), which can be 
implemented by using half adders and full adders.This RCA is a serial adder which is used to perform any number of additions, but it has propagation 
delay problem due to carry propagation from stage to stage which leads to more delay. To overcome this delay, parallel adders (parallel prefix adders) 
are preferred as they pre-compute the carry. The parallel prefix adders are KS adder (kogge-stone), SKS adder (sparse kogge-stone), Spanning tree 
and Brentkung adders. These adders are designed and compared by using power and delay constraints. Simulation and Synthesis process is 
performed on these adders using by Model sim6.4b, Xilinx ISE9.2i. 
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I. INTRODUCTION 
In processors (DSP) and microprocessor data path units, 

adder is an important element. As such, extensive research 
continues to be focused on improving the power-delay 
performance of the adder. In VLSI implementations, parallel 
adders are known to have the best performance. 
Reconfigurable logic like Field Programmable Gate Arrays 
(FPGAs) has been gaining more popularity in recent years 
because it offers improved performance in terms of speed and 
power over DSP-based and microprocessor-based solutions, 
for many practical designs involving mobile DSP and 
telecommunications applications and a significant reduction 
in development time and cost over Application Specific 
Integrated Circuit (ASIC) designs. The power advantage is 
important with the growing popularity of mobile and portable 
electronics, which make extensive use of DSP functions. 
However, because of the structure of the configurable logic 
and routing resources in FPGAs, parallel-prefix adders will 
have a different performance than VLSI implementations [1]. 
In particular, most modern FPGAs employ a fast-carry chain 
which optimizes the carry path for the simple Ripple Carry 
Adder (RCA). 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Ripple carry adder is the cascade of full adders which 
performs the addition operation but the only drawback is  
propagation delay as the carry has to ripple from stage to 
stage. So in order to reduce this delay many adders came into  
existence. Some of them are Carry skip and Carry look ahead 
adders which reduce the delay by precomputing the carry.  
Later Parallel Prefix adders are preferred in order to reduce 
the delay as they will perform pre-computation and post-
computation. In this paper, some of the tree based adder 
structures are characterized and compared with the Ripple 
Carry Adder (RCA) and the Carry Skip Adder (CSA). Finally, 
some conclusions and suggestions for improving FPGA 
designs to enable better tree-based adder performance are 
given to meet the present day constraints to reduce the delay 
and speed up the computation. 

II. CARRY-TREE ADDER DESIGNS  
 

Parallel-prefix adders are also known as carry-tree adders. 
They pre-compute the propagate and generate signals. These 
signals are variously combined using the fundamental carry 
operator (fco)[2].  

(gL, pL) ο (gR, pR) = (gL + pL•gR, pL•pR) (1) 
 

These operators can be combined in different ways to form 
various adder structures by the associative property of the 
fco,. For, example the four-bit carry-look ahead (CLA) 
generator is given by: 
           c4 = (g4, p4) ο [  (g3, p3) ο [(g1, p1) ο (g2, p2)]  ]   (2) 
 

A simple rearrangement of the order of operations allows 
parallel operation, which results in a most efficient tree 
structure for this four bit example: 
 
           c4 = [(g4, p4) ο (g3, p3)] ο [(g2, p2 ) ο (g1, p1)]     (3) 
It is readily apparent that a key advantage of the tree-
structured adder is that the critical path due to the carry delay 
is on the order of log 2N for an N-bit wide adder. Various 
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families of adders arise from the arrangement of the prefix 
network.  For this study, the focus is on the Kogge-Stone 
adder , known for having minimal logic depth and fanout (see 
Fig 1(a)). Here we designate BC as the black cell which 
generates the ordered pair in equation (1); the gray cell (GC) 
generates the left signal only. The interconnect area is known 
to be high, but for an FPGA with large routing overhead to 
begin with, this is not as important as in a VLSI 
implementation. The regularity of the Kogge Stone prefix tree  
network has built in redundancy which has implications for 
fault-tolerant designs. The sparse Kogge-Stone adder, shown 
in Fig 1(b), is also studied. This hybrid design fulfills the 
summation process with a 4 bit RCA allowing the carry prefix 
network to be simplified[3].The dark shaded square box is 
considered as black and node and the dotted square box is 
considered as gray node of parallel adder. 
 

 
 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 
Fig. 1. (a) 16 bit Kogge-Stone adder and (b) Sparse 16-bit 
Kogge-Stone adder 
 

Another carry-tree adder known as the spanning tree and 
brent kung adders as shown in Fig 2(a) and Fig 2(b) are 
examined.       
 
 

 

 

 

 

 

(a) 

This  usage of a fast carry-chain for the RCA in FPGA, it is   
interesting to compare the performance of this adder with the 
Sparse Kogge -Stone and regular Kogge-Stone adders. 

 

 (b) 

Fig. 2. (a)Spanning Tree Carry Look ahead Adder (16 bit) (b) 
16 bit Brent Kung adder. 
 

III. RELATED WORK 
 

On the Xilinx 4000 series FPGAs, the ripple carry adder  and 
carry-skip adders, only an optimized form of the carry-skip 
adder performance is more better than the ripple carry adder 
when the adder operands were above 56 bits [4]. A study of 
adders yielded similar results when implemented on the 
Xilinx Virtex II. In the authors considered several parallel 
prefix adders implemented on a Xilinx Virtex 5 FPGA. It is 
found that the normal RCA adder is superior to the parallel 
prefix designs because the RCA can take advantage of the fast 
carry chain  

This study focuses on carry-tree adders implemented on a 
FPGA of Xilinx Spartan 3E. The distinctive contributions of 
this paper are two-folded. In the first, we consider tree-based 
adders and a hybrid form which combines a tree structure 
with a ripple-carry design. The Kogge-Stone adder is taken as 
a representative of the former type and the sparse Kogge-
Stone and spanning tree adder are representative of the latter 
category[5]. Second, this paper considers the practical issues 
involved in testing the adders and provides actual 
measurement data to compare with simulation results. The 
previous works mentioned above all rely upon the synthesis 
reports from the FPGA place and route software for their 
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results. In addition with being able to compare the simulation 
data with measured data using a high-speed logic analyzer, 
our results present a different perspective in terms of both 
results and types of adders. 

The adders to be studied were designed with varied bit 
widths up to 128 bits and coded in VHDL. The functionality of 
the designs was verified via simulation with Model Sim 6.4b. 
The Xilinx ISE 10.1i software was used to synthesize the 
designs onto the Spartan 3E FPGA. In order to effectively test 
for the critical delay, two steps can be taken. First, a memory 
block (labeled as ROM in the figure below) can be instantiated 
on the FPGA using the Core Generator to allow arbitrary 
patterns of inputs to be applied to the adder design. At each 
adder output, the multiplexer selects whether to include or 
not to include the adder in the measured results,. A switch on 
the FPGA board was wired to the select pin of the 
multiplexers. This allows measurements to be made to deduct 
out the delay due to the memory, the multiplexers, and 
interconnect (both external cabling and internal routing) [6]. 

IV. IMPLEMENTATION 
Xing and Yu [7] noted that delay models and cost analysis 

for designs developed for VLSI technology does match the 
second, the parallel prefix network was analyzed to directly to 
FPGA designs. They compared the design of determine if a 
specific pattern could be used to extract the worst case delay. 
Considering the structure of the Generate-Propagate (GP) 
blocks (i.e., the BC and GC cells), we were able to develop the 
following scheme. 

 
If we arbitrarily assign the (g, p) ordered pairs the values (1, 

0) = True and (0, 1) = False, then the table is self-contained 
and forms an OR truth table. If both inputs to the GP block are 
false, then the output will be false; conversely, the output is 
true  if both the  inputs are true, then. Hence, an input pattern 
that alternates between generating the (g, p) pairs of (1, 0) and 
(0, 1) will force its GP pair block to alternate states.  

Likewise, it is easily seen that the GP blocks being fed by its 
predecessors will also change their states. Therefore, this 
scheme will ensure that a worse case delay will be generated 
in the parallel prefix network since every block will be active. 
In order to ensure this scheme works, the parallel prefix 
adders were synthesized with the “Keep Hierarchy” design 
setting turned on (otherwise, the FPGA compiler attempts to 
reorganize the logic assigned to each LUT). With this option 
turned on, it ensures that each GP block is mapped to one 
LUT, preserving the basic parallel prefix structure, and 
ensuring that this test strategy is effective for determining the 
critical delay. The designs were also synthesized for speed 
rather than area optimization [8]. 

 
In the simulation process of kogge stone adder,  a and b of 

16 bits are taken as inputs and S and Cout are taken as output   
Intermediate signals are  G,C, l, m, q, r, s, t, v. In the 
simulation process of sparse kogge stone adder,  a and b of 16 

bits are taken as inputs and S and C are taken as output   
Intermediate signals are  considered as G, P, X. In the 
simulation process of spanning adder,  a and b of 16 bits are 
taken as inputs and Sum and C are taken as output and the 
intermediate signals are  g1,p1,x4,x8 and x12. In the 
simulation process of brent kung adder, a and b of 16 bits are 
taken as inputs and Sum and C. Finally adders like carryskip 
and ripple carry adders are compared with koggestone, sparse 
kogge, spanning tree and brent kung adders  in terms of delay 
and power and are tabulated in the table1 given below. 

V.  SIMULATION AND SYNTHESIS REPORT 

 

(a) 

Device Utilization Summary (estimated values) 

Logic Utilization Used Available Utilizatio
n 

Number of Slices 18 256 7% 

Number of 4 input 
LUTs 32 512 6% 

Number of bonded 
IOBs 50 88 56% 

(b) 

Fig.3: (a) Ripple carry adder simulated wave form (b)RCA 
device utilization. 

 

(a) 

Device Utilization Summary (estimated values) 

Logic Utilization Used Available Utilizatio
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n 

Number of Slices 22 256 8% 

Number of 4 input LUTs 39 512 7% 

Number of bonded IOBs 50 88 56% 

(b) 

Fig.4: (a) Carry Skip adder simulated wave form (b) Carry 
skip device utilization. 

 

 (a) 

Device Utilization Summary (estimated values) 

Logic Utilization Used Available Utilization 

Number of Slices 21 256 8% 

Number of 4 input LUTs 36 512 7% 

Number of bonded IOBs 50 88 56% 

(b) 

Fig.5: (a) Kogge stone simulated wave form (b) KS device 
utilization. 

                                       
(a) 

Device Utilization Summary (estimated values) 

Logic Utilization Used Available Utilization 

Number of Slices 29 256 11% 

Number of 4 input 
LUTs 51 512 9% 

Number of bonded 
IOBs 65 88 73% 

(b) 

Fig.6: (a) Sparse kogge stone simulated wave form    (b) SKS 
device utilization. 

 

(a) 

Device Utilization Summary (estimated values) 

Logic Utilization Used Available Utilization 

Number of Slices 18 256 7% 

Number of 4 input 
LUTs 32 512 6% 

Number of bonded 
IOBs 65 88 73% 

(b) 

Fig.7: (a) Spanning tree simulated wave form (b) Spanning 
tree device utilization. 

    

(a) 

Device Utilization Summary (estimated values) 

Logic Utilization Used Available Utilization 

Number of Slices 24 256 9% 
Number of 4 input 
LUTs 43 512 8% 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013                                                               1506 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

 

Number of bonded 
IOBs 50 88 56% 

(b) 

Fig.8: (a) Brent kung simulated wave form (b) Brent kung  
device utilization. 

VI DELAY AND POWER ANALYSIS 
The synthesis of the above mentioned adders is done in 
Xilinx9.2i. The delay & power parameters are being observed and 
they are being compared  between adders and parallel adders 
and then tabulated. 
     Table.1: Comparison of adders in terms of delay and power 

ADDER DELAY POWER 

Ripple carry adder 24.68ns     28mw  

Carry skip adder 25.006ns     29mw  

Kogge stone adder 20.262ns     20mw  

Sparse kogge stone adder 22.56ns     19mw  

Spanning tree adder 20.16ns     19mw  

Brent kung adder 18.05ns     20mw  

 VII CONCLUSION 
         From the results, it is concluded that the Brent kung 
adder provides better performance than Ripple Carry adder 
and Carry Skip adder. The power-delay performance can be 
increased with Sparse koggestone adder and Spanning tree 
adder. This is important where large number of adders to be 
used in precision arithmetic and cryptographic applications 
where the addition of numbers on the order of a thousand bits 
is very common. Because the adder is often the critical 
element which determines to a large part the cycle time and 
power dissipation for many digital signal processing and 
cryptographical implementations, For future FPGA designs it 
would be worthwhile to include an optimized carry path to 
enable tree-based adder. So these parallel prefix adders are 
the best choice in many VLSI application where power is the 
main constraint 
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