
International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 1502
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Design and Characterization of Koggestone,
Sparse Koggestone, Spanning tree and

Brentkung Adders
V. Krishna Kumari, Y. Sri Chakrapani, Dr. M. Kamaraju

Abstract-- In various VLSI designs, the adders are frequently used. The most commonly used adder is the Ripple Carry Adder (RCA), which can be
implemented by using half adders and full adders.This RCA is a serial adder which is used to perform any number of additions, but it has propagation
delay problem due to carry propagation from stage to stage which leads to more delay. To overcome this delay, parallel adders (parallel prefix adders)
are preferred as they pre-compute the carry. The parallel prefix adders are KS adder (kogge-stone), SKS adder (sparse kogge-stone), Spanning tree
and Brentkung adders. These adders are designed and compared by using power and delay constraints. Simulation and Synthesis process is
performed on these adders using by Model sim6.4b, Xilinx ISE9.2i.

Keywords—Adders, KS adder, RCA, Simulation, SKS adder, Synthesis.

——————————  ——————————

I. INTRODUCTION
In processors (DSP) and microprocessor data path units,

adder is an important element. As such, extensive research
continues to be focused on improving the power-delay
performance of the adder. In VLSI implementations, parallel
adders are known to have the best performance.
Reconfigurable logic like Field Programmable Gate Arrays
(FPGAs) has been gaining more popularity in recent years
because it offers improved performance in terms of speed and
power over DSP-based and microprocessor-based solutions,
for many practical designs involving mobile DSP and
telecommunications applications and a significant reduction
in development time and cost over Application Specific
Integrated Circuit (ASIC) designs. The power advantage is
important with the growing popularity of mobile and portable
electronics, which make extensive use of DSP functions.
However, because of the structure of the configurable logic
and routing resources in FPGAs, parallel-prefix adders will
have a different performance than VLSI implementations [1].
In particular, most modern FPGAs employ a fast-carry chain
which optimizes the carry path for the simple Ripple Carry
Adder (RCA).

Ripple carry adder is the cascade of full adders which
performs the addition operation but the only drawback is
propagation delay as the carry has to ripple from stage to
stage. So in order to reduce this delay many adders came into
existence. Some of them are Carry skip and Carry look ahead
adders which reduce the delay by precomputing the carry.
Later Parallel Prefix adders are preferred in order to reduce
the delay as they will perform pre-computation and post-
computation. In this paper, some of the tree based adder
structures are characterized and compared with the Ripple
Carry Adder (RCA) and the Carry Skip Adder (CSA). Finally,
some conclusions and suggestions for improving FPGA
designs to enable better tree-based adder performance are
given to meet the present day constraints to reduce the delay
and speed up the computation.

II. CARRY-TREE ADDER DESIGNS

Parallel-prefix adders are also known as carry-tree adders.
They pre-compute the propagate and generate signals. These
signals are variously combined using the fundamental carry
operator (fco)[2].

(gL, pL) ο (gR, pR) = (gL + pL•gR, pL•pR) (1)

These operators can be combined in different ways to form
various adder structures by the associative property of the
fco,. For, example the four-bit carry-look ahead (CLA)
generator is given by:
 c4 = (g4, p4) ο [(g3, p3) ο [(g1, p1) ο (g2, p2)]] (2)

A simple rearrangement of the order of operations allows
parallel operation, which results in a most efficient tree
structure for this four bit example:

 c4 = [(g4, p4) ο (g3, p3)] ο [(g2, p2) ο (g1, p1)] (3)
It is readily apparent that a key advantage of the tree-
structured adder is that the critical path due to the carry delay
is on the order of log 2N for an N-bit wide adder. Various

• V.Krishna Kumari is currently pursuing M.Tech, Embedded systems
in department of electronics and communication engineering in JNTUK
University, India, PH-9032247973. E-mail: kkecm@yahoo.com

• Y.Sri Chakrapani is currently working as Associate Professor in
department of electronics and communication engineering,Gudlavalleru
engineering College ,E-mail: srichakrapani@gmail.com

• Dr. M.Kamaraju is currently working as Pprofessor & HOD in
electronics and communication engineering ,Gudlavalleru engineering
College , E-mail:madduraju@yahoo.com

IJSER

http://www.ijser.org/
mailto:kkecm@yahoo.com
mailto:srichakrapani@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 1503
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

families of adders arise from the arrangement of the prefix
network. For this study, the focus is on the Kogge-Stone
adder , known for having minimal logic depth and fanout (see
Fig 1(a)). Here we designate BC as the black cell which
generates the ordered pair in equation (1); the gray cell (GC)
generates the left signal only. The interconnect area is known
to be high, but for an FPGA with large routing overhead to
begin with, this is not as important as in a VLSI
implementation. The regularity of the Kogge Stone prefix tree
network has built in redundancy which has implications for
fault-tolerant designs. The sparse Kogge-Stone adder, shown
in Fig 1(b), is also studied. This hybrid design fulfills the
summation process with a 4 bit RCA allowing the carry prefix
network to be simplified[3].The dark shaded square box is
considered as black and node and the dotted square box is
considered as gray node of parallel adder.

(a)

(b)
Fig. 1. (a) 16 bit Kogge-Stone adder and (b) Sparse 16-bit
Kogge-Stone adder

Another carry-tree adder known as the spanning tree and
brent kung adders as shown in Fig 2(a) and Fig 2(b) are
examined.

(a)

This usage of a fast carry-chain for the RCA in FPGA, it is
interesting to compare the performance of this adder with the
Sparse Kogge -Stone and regular Kogge-Stone adders.

 (b)

Fig. 2. (a)Spanning Tree Carry Look ahead Adder (16 bit) (b)
16 bit Brent Kung adder.

III. RELATED WORK

On the Xilinx 4000 series FPGAs, the ripple carry adder and
carry-skip adders, only an optimized form of the carry-skip
adder performance is more better than the ripple carry adder
when the adder operands were above 56 bits [4]. A study of
adders yielded similar results when implemented on the
Xilinx Virtex II. In the authors considered several parallel
prefix adders implemented on a Xilinx Virtex 5 FPGA. It is
found that the normal RCA adder is superior to the parallel
prefix designs because the RCA can take advantage of the fast
carry chain

This study focuses on carry-tree adders implemented on a
FPGA of Xilinx Spartan 3E. The distinctive contributions of
this paper are two-folded. In the first, we consider tree-based
adders and a hybrid form which combines a tree structure
with a ripple-carry design. The Kogge-Stone adder is taken as
a representative of the former type and the sparse Kogge-
Stone and spanning tree adder are representative of the latter
category[5]. Second, this paper considers the practical issues
involved in testing the adders and provides actual
measurement data to compare with simulation results. The
previous works mentioned above all rely upon the synthesis
reports from the FPGA place and route software for their

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 1504
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

results. In addition with being able to compare the simulation
data with measured data using a high-speed logic analyzer,
our results present a different perspective in terms of both
results and types of adders.

The adders to be studied were designed with varied bit
widths up to 128 bits and coded in VHDL. The functionality of
the designs was verified via simulation with Model Sim 6.4b.
The Xilinx ISE 10.1i software was used to synthesize the
designs onto the Spartan 3E FPGA. In order to effectively test
for the critical delay, two steps can be taken. First, a memory
block (labeled as ROM in the figure below) can be instantiated
on the FPGA using the Core Generator to allow arbitrary
patterns of inputs to be applied to the adder design. At each
adder output, the multiplexer selects whether to include or
not to include the adder in the measured results,. A switch on
the FPGA board was wired to the select pin of the
multiplexers. This allows measurements to be made to deduct
out the delay due to the memory, the multiplexers, and
interconnect (both external cabling and internal routing) [6].

IV. IMPLEMENTATION
Xing and Yu [7] noted that delay models and cost analysis

for designs developed for VLSI technology does match the
second, the parallel prefix network was analyzed to directly to
FPGA designs. They compared the design of determine if a
specific pattern could be used to extract the worst case delay.
Considering the structure of the Generate-Propagate (GP)
blocks (i.e., the BC and GC cells), we were able to develop the
following scheme.

If we arbitrarily assign the (g, p) ordered pairs the values (1,

0) = True and (0, 1) = False, then the table is self-contained
and forms an OR truth table. If both inputs to the GP block are
false, then the output will be false; conversely, the output is
true if both the inputs are true, then. Hence, an input pattern
that alternates between generating the (g, p) pairs of (1, 0) and
(0, 1) will force its GP pair block to alternate states.

Likewise, it is easily seen that the GP blocks being fed by its
predecessors will also change their states. Therefore, this
scheme will ensure that a worse case delay will be generated
in the parallel prefix network since every block will be active.
In order to ensure this scheme works, the parallel prefix
adders were synthesized with the “Keep Hierarchy” design
setting turned on (otherwise, the FPGA compiler attempts to
reorganize the logic assigned to each LUT). With this option
turned on, it ensures that each GP block is mapped to one
LUT, preserving the basic parallel prefix structure, and
ensuring that this test strategy is effective for determining the
critical delay. The designs were also synthesized for speed
rather than area optimization [8].

In the simulation process of kogge stone adder, a and b of

16 bits are taken as inputs and S and Cout are taken as output
Intermediate signals are G,C, l, m, q, r, s, t, v. In the
simulation process of sparse kogge stone adder, a and b of 16

bits are taken as inputs and S and C are taken as output
Intermediate signals are considered as G, P, X. In the
simulation process of spanning adder, a and b of 16 bits are
taken as inputs and Sum and C are taken as output and the
intermediate signals are g1,p1,x4,x8 and x12. In the
simulation process of brent kung adder, a and b of 16 bits are
taken as inputs and Sum and C. Finally adders like carryskip
and ripple carry adders are compared with koggestone, sparse
kogge, spanning tree and brent kung adders in terms of delay
and power and are tabulated in the table1 given below.

V. SIMULATION AND SYNTHESIS REPORT

(a)

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilizatio
n

Number of Slices 18 256 7%

Number of 4 input
LUTs 32 512 6%

Number of bonded
IOBs 50 88 56%

(b)

Fig.3: (a) Ripple carry adder simulated wave form (b)RCA
device utilization.

(a)

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilizatio

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 1505
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

n

Number of Slices 22 256 8%

Number of 4 input LUTs 39 512 7%

Number of bonded IOBs 50 88 56%

(b)

Fig.4: (a) Carry Skip adder simulated wave form (b) Carry
skip device utilization.

 (a)

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 21 256 8%

Number of 4 input LUTs 36 512 7%

Number of bonded IOBs 50 88 56%

(b)

Fig.5: (a) Kogge stone simulated wave form (b) KS device
utilization.

(a)

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 29 256 11%

Number of 4 input
LUTs 51 512 9%

Number of bonded
IOBs 65 88 73%

(b)

Fig.6: (a) Sparse kogge stone simulated wave form (b) SKS
device utilization.

(a)

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 18 256 7%

Number of 4 input
LUTs 32 512 6%

Number of bonded
IOBs 65 88 73%

(b)

Fig.7: (a) Spanning tree simulated wave form (b) Spanning
tree device utilization.

(a)

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slices 24 256 9%
Number of 4 input
LUTs 43 512 8%

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013 1506
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Number of bonded
IOBs 50 88 56%

(b)

Fig.8: (a) Brent kung simulated wave form (b) Brent kung
device utilization.

VI DELAY AND POWER ANALYSIS
The synthesis of the above mentioned adders is done in
Xilinx9.2i. The delay & power parameters are being observed and
they are being compared between adders and parallel adders
and then tabulated.
 Table.1: Comparison of adders in terms of delay and power

ADDER DELAY POWER

Ripple carry adder 24.68ns 28mw

Carry skip adder 25.006ns 29mw

Kogge stone adder 20.262ns 20mw

Sparse kogge stone adder 22.56ns 19mw

Spanning tree adder 20.16ns 19mw

Brent kung adder 18.05ns 20mw

 VII CONCLUSION
 From the results, it is concluded that the Brent kung
adder provides better performance than Ripple Carry adder
and Carry Skip adder. The power-delay performance can be
increased with Sparse koggestone adder and Spanning tree
adder. This is important where large number of adders to be
used in precision arithmetic and cryptographic applications
where the addition of numbers on the order of a thousand bits
is very common. Because the adder is often the critical
element which determines to a large part the cycle time and
power dissipation for many digital signal processing and
cryptographical implementations, For future FPGA designs it
would be worthwhile to include an optimized carry path to
enable tree-based adder. So these parallel prefix adders are
the best choice in many VLSI application where power is the
main constraint

ACKNOWLEDGMENT
It is very glad to take this opportunity to thank the Professor
and Head of Department., Dr. M. Kamaraju, Gudlavalleru
Engineering College for taking keen interest and for providing
encouragement in my project work and I wish to express my
deep gratitude and sincere thanks to my mentor guide Mr. Y.
Sri Chakrapani for taking interest and for providing his co-

operation and guidance, which has helped me immensely, in
completing this research work. I would like to thank the
teaching and non-teaching Staff of Gudlavalleru engineering
college for encouraging us for this research work.

REFERENCES

[1] K. Vitoroulis and A. J. Al-Khalili, “Performance of
Parallel Prefix Adders Implemented with FPGA
technology,” IEEE Northeast Workshop on Circuits and
Systems, pp. 498-501, Aug. 2007.

[2] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for
the Efficient Solution of a General Class of Recurrence
Equations,” IEEE Trans. on Computers, Vol. C-22, No 8,
August 1973.

[3] R. P. Brent and H. T. Kung, “A regular layout for
parallel adders,” IEEE Trans. Comput., vol. C-31, pp.
260-264, 1982.

[4] N. H. E. Weste and D. Harris, CMOS VLSI Design, 4th
edition, Pearson–Addison-Wesley, 2011.

[5] T. Lynch and E. E. Swartzlander, “A Spanning Tree
Carry Lookahead Adder,” IEEE Trans. on Computers,
vol. 41, no. 8, pp. 931-939, Aug. 1992

[6] P. Ndai, S. Lu, D. Somesekhar, and K. Roy, “Fine-
Grained Redundancy in Adders,” Int. Symp. on Quality
Electronic Design, pp. 317-321, March 2007.

[7] S. Xing and W. W. H. Yu, “FPGA Adders: Performance
Evaluation and Optimal Design,” IEEE Design & Test
of Computers, vol. 15, no. 1, pp. 24-29, Jan. 1998.

[8] D. Harris, “A Taxonomy of Parallel Prefix Networks,”
in Proc. 37th Asilomar Conf. Signals Systems and
Computers, pp. 2213–7, 2003.

.

IJSER

http://www.ijser.org/

	I. Introduction
	II. Carry-Tree Adder Designs
	III. Related Work
	IV. Implementation
	V. Simulation and Synthesis Report
	VI Delay and Power analysis
	VII Conclusion
	Acknowledgment
	References

